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Figure 1.1: A square showing different kinematic regimes of nature
1 Introduction

1.1 Why quantum field theory?

This is a course on quantum field theory. Quantum field theory is an amazing and wonderful subject. It
is the mathematical framework behind our most precise understanding of the natural world, and it is really
the language in which essentially all modern research in quantum physics is done. I am happy to say that
by the end of this year you will not only understand the principles behind it, but you will also be able to use
it to calculate observable things.

I should also say at the outset that quantum field theory can be hard. It is a bit of a conceptual leap, and
the calculations that are involved can be difficult. There are also many different ways to say the same thing,
as you will see. This is part of the fun, but as always the things that are the most fun invariably involve a
bit of a challenge.

So before the inevitable blizzard of indices and infinite-dimensional integrals that will follow, let’s first
understand: why do we need quantum field theory?

Let’s start by drawing a map of physical theories, as in Figure 1.1.

The goal is to understand things that are both small, and that move fast. Some examples are:

1. ...light. You may have learned in an earlier quantum mechanics class that there are “light particles”
called photons. (If you haven’t learned this, don’t worry; it’s hard to explain it properly without
quantum field theory). You might expect that light particles are “small”, and they move at the speed
of light. Thus a careful quantum mechanical treatment of light will invariably require quantum field
theory.

2. Particle colliders, e.g. the LHC at CERN — these are devices that make individual particles go very,
very fast. It then smashes them together. To figure out what happens in this process requires quantum



field theory. (This is maybe a good time to stress that in reality this “smashing” operation is a kind
of microscope — we do this so that we can see what is happening at small scales. We will learn more
about this later).

3. Very hot things. If you heat something up, the particles in it move around more quickly. If you
heat it up enough, you might worry that they move around near the speed of light. You then need
QFT to understand this. This sort of thing does not happen very often, but it did happen in the early
universe — the “Big Bang” was basically an explosion of arbitrarily high temperature, and to describe
what happens afterwards requires the formalism of quantum field theory.

So the point is that quantum field theory is basically what you get if you combine quantum mechanics and
special relativity. It may surprise you that this needs a whole course; why can’t we just make quantum
mechanics relativistically invariant and move on with our life? (In other words, why isn’t this subject called
“relativistic quantum mechanics” instead of “quantum field theory”?).

It turns out a great deal of new physics enters. Let’s heuristically try and understand why. This is really for
inspiration, later on we will do this all precisely. Consider a free particle with mass m. In non-relativistic
classical mechanics, the energy for the particle would be

P
Enonfrel = % (11)
where p is the 3-vector momentum of the particle. This is not the right equation for a relativistic particle,
however. The correct equation there turns out to be:

)

Erel = /P22 + m2c ~ mc® + % +O(p*) (1.2)
m

You may recall this equation from an earlier class on relativity; if not, we will recap quite a lot of it soon so

don’t worry.

In the last equality I performed a Taylor expansion in powers of p?. Note that if we set p = 0 we get the world’s
most famous equation F = mc?: this says is that in relativity a single particle has an inextricable amount of
energy mc? called the rest mass (the thing we normally call “kinetic energy” is basically a correction on top
of that). The reason why this formula is so profound is that it tells you that particles always have energy,
even when they are not moving! — however, reversing the logic you might imagine that if we supply enough
energy, we might be able to create a particle! In particular if we supply energy E = 2mc? then we can create
a particle/anti-particle pair.

So far I have only discussed relativity; now let us include quantum mechanics. In quantum mechanics, we
know that energy fluctuates. More precisely, what this means is that we will often consider a state that is
not an energy eigenstate, which means that it will have some spread of energies AE. If we ever end up with

AE =~ 2mc? (1.3)

then it suggests that the fluctuations of energy will be enough to create a particle/anti-particle pair. In
other words, there exist states where the particle number will change. But this is not allowed in traditional
quantum mechanics — you always write down the Schrodinger equation for 1 particle, or 2 particles, or some
fixed number N, which you fix to start with. Relativity tells us this is not enough. We need a new formalism
entirely, one where the state space allows the particle number to change. That is the formalism of quantum
field theory.

LOf course the liberation of this energy is how nuclear power works, and the conversion factor of ¢? is one of the reasons it
is so powerful.



Let us push on this a bit more and figure out when we expect this new formalism to be experimentally
relevant. Imagine putting the particle in a box of size L. Recall the Heisenberg uncertainty relation

AgAp > g (1.4)

What does this mean for our particle in the box? We see that because the position is known to within an
accuracy of at least L, there is an uncertainty in the momentum of at least

h
Ap > — 1.5
P57 (1.5)
Now I want to use this to figure out the typical uncertainty in AFE.

Era = V/D?c? + m2ct = |plc (1.6)

where the last equality is true in the limit p — oo. If we use the last expression to figure out AE then we

have

AE ~ cAp ~ % (1.7)

(There is some mild sleaziness in what I just did. Self-consistency means that this is actually the correct
expression only as we take L very small, so let’s do that from now on).

Now from above we know that something interesting will happen when we have AE ~ 2mc? , which means
that

AE ~ 2mc? — L~ (1.8)
mc

This is a very interesting formula. Notice that it combines % (for quantum) and ¢ (for relativity) and it
says that if you try to confine a prticle to a box of size smaller than size % then the quantum fluctuations
of energy will threaten to create particles from the vacuum. For a given particle this number is called the

(reduced) Compton wavelength:

h
LCompton = % (19)

For an electron this wavelength is 107'2 m or so.

Now I haven’t proven to you that relativistic quantum mechanics doesn’t work; it can be an instructive
exercise to just ignore what I told you above and try and build a relativistic version of quantum mechanics
and check that things go wrong. You get confusing things like negative probabilities, negative energies, etc.
I may discuss some of these things as we go on; it requires a bit of machinery of Lorentz-invariance.

But first let me tell you where we are going. In traditional classical mechanics the degrees of freedom are the
numbers ¢, (t), po(t). Here a runs over the degrees of freedom; for example for a particle in three dimensions
we would have a € {1,2,3}.

In quantum mechanics we learned how to canonically quantize these. The process of canonical quantization
is (for us) an algorithm: we stick in a classical theory, we do some manipulations, and then we end up with
a quantum theory, where we obtain operators §,,p, that obey a Heisenberg uncertainty relation like (1.4).

Now let’s think about classical field theory. In classical field theory, the basic degree of freedom — i.e. the
analogue of ¢(t) — is a field ¢(&,t). In this example, I am talking about a real scalar field, which is a function
from space and time to the real numbers:

¢:R¥ SR (1.10)

we can have other kinds of fields; for example a complex scalar field, or a vector field such as E(m,t), the
electric field from elementary electrodynamics. Note that this object ¢(Z,t) takes on a different value at each
point in space, so it is a lot of degrees of freedom — infinitely many, in fact.



In classical field theory ¢(#,t) will have a conjugate momentum which I will call 7(Z,¢). We will discuss
the equations that these two things obey. Now to get quantum field theory from this, we again canonically
quantize this theory, and we end up with a quantum system with operators ¢(Z) and #(Z). This process — i.e.
quantizing fields rather than simple degrees of freedom like g, (t) — is usually called second quantization. In
my opinion (...not shared by everyone) calling this “second” quantization is somewhat confusing terminology
and is largely for historical reasons, so I won’t explain why it is called that till later.?

Note that we have infinitely many operators — one quantum operator at each point in space, and thinking
about how to organize this information is one of the main goals of this course.

Now let me tell you what will happen once we understand the physics above. We will understand the following
facts about the universe:
1. There are different, yet totally indistinguishable copies of elementary particles like the electron.

2. There is a relationship between the statistics of particles (i.e. the behavior of their exchange) and their
spin (i.e. what happens if you rotate them).

3. Anti-particles exist.
4. Particles can be created and destroyed. (We already talked about this).

5. Finally, and perhaps most profoundly: the things that we call forces can be imagined as being caused
by the exchange of particles.

1.2 Conventions

We will use the following conventions: from now on we will mostly set A = ¢ = 1. Our metric signature will
be (—,+, +,+); note that many (most?) quantum field theory textbooks use a different convention, so stay
vigilant for sign differences.

2 Special relativity and Lorentz invariance

We will now review Lorentz invariance. I should note that you are aware of most of this already from your
Geometry of Mathematical Physics course last term, so this will have something of the character of a review,
but hopefully one that is helpful. However, before doing that, let’s discuss something much simpler: we will
warm up very quickly with rotational invariance.

2.1 2d rotational invariance

Consider the plane R? with coordinates (z,y). We can imagine a different coordinate system (z’,y’) which
is related to the old one by the following formula

o (2" _ [ cos® sin@\ [z _ -
v (y’) B (— sin 6 COSH) (y) = R(O)7 (2.1)

Here the matrix R(f) is an element of the two dimensional rotation group SO(2). Let me now say some
extremely obvious things:

2 Actually I never explained why it is called this. Ah well.



1. The individual components z’ and 3y’ are not independent under the rotation.

2. The length of the vector however is invariant under the rotation: (#)2 = ' -2/ = #- & This is
geometrically obvious, and we can also calculate it immediately from the form of the transformation.
Let me just do this once:

2'? +y"* = (xcos + ysinh)? + (ycosf — xsinf)? = 2?2 + 42 (2.2)

3. More generally, the dot product of any two vectors is invariant. Consider two vectors ¥ = (v*,v¥) and
W = (w®, wY); the dot product of the two vectors ¥ - @ = v’ - w’ is also invariant. Let me note that I

can write this dot product as
10

S o T o
v-wW =1 <0 1>w. (2.3)

Now the condition that the dot product is invariant can be written as

T
/

v w =T RTRw (2.4)

In other words RT R = 1. You can easily check this is true for rotation matrices of the form (2.1), and
in a more general number of spatial dimensions this is the definition of the orthogonal group.

This is all super obvious. Now let me introduce for you the distance paradoz! The distance paradox is the
fact that if you have a triangle AB, the distance AB is not equal to the distance BC plus CA. You might
say that this is not a paradox, and that would be a perfectly fine viewpoint that you should keep in mind.

We are also used to the fact that the laws of physics are rotationally invariant; what this means is that if
you use (2’,y’) to describe your system, you should get all the same answers as if you used (z,y).?

2.2 Basic kinematics of Lorentz invariance

We now move to special relativity. Einstein defined them by the following two postulates:

1. The principle of relativity: the laws of nature are the same in all inertial frames.

2. The speed of light is the same in all inertial frames.

I haven’t defined an inertial frame yet. Informally, two inertial frames are related in the following way: if I
am at rest in an inertial frame, and you are moving past me at a constant speed, then you are also in an
inertial frame. I'll give a more formal definition slightly below.

Now let us put some mathematics on these ideas. We have space and time, which I will denote as R"3; the
“1” here separates the time from the space.

We label a point in spacetime by z# = (¢, 2%, 2%, 23) = (29, 2%, 22, 23) (I will sometimes call the time compo-

nent 7). Note that I have put the u index “up”; this is called the contravariant 4-vector* and this notation
carries some information and is important in what follows.

3The laws of physics are obviously rotationally invariant. Yet nevertheless things always fall down, and not e.g. up. How
would you convince a caveman (or, apparently, a member of the Flat Earth Society, which to my continual amazement seems to
be a real thing) that the laws of physics are rotationally invariant in the fact of such obvious experimental evidence otherwise?
Can you think of other areas of life that might appear to be less symmetric than they actually are?

41 will never use that name again and just call it “up”.


https://en.wikipedia.org/wiki/Modern_flat_Earth_beliefs
https://en.wikipedia.org/wiki/Modern_flat_Earth_beliefs
https://en.wikipedia.org/wiki/Higgs_boson

Now consider the following transformation to a new coordinate system x’#:

2
ARG 1
B = z = 7(‘%1 _Ut) i
X 22 22 Y = (2.5)
x'3 3 2

This is called a Lorentz boost. It mixes together space and time, and you should think about it as a fancy
version of the rotations we discussed previously.

Let’s think about what it means for a second. Consider a particle sitting at rest in the origin of unprimed
coordinate system, which means that it extends along the following line:

t
1

2 =
3

(2.6)

O O O 1

x
T
z particle

Here 7 is a parameter which runs along the worldline of the particle. What is happening in the primed
coordinate system? There we have
/1 - (2'7>
z particle -t

(I am ignoring 2?2 as they don’t do anything). In other words, in the primed coordinate system the particle
is moving, it does not have a constant 2’'. Thus the primed coordinates correspond to a frame that is moving
with respect to the original frame. We will see what they are for shortly.

Note that if we take the limit ¢ — oo — this is the non-relativistic limit — this transformation becomes;

t t
/1 1
m_ | _ |z = vt
z 22 22 (2.8)
13 IS

which is called a “Galilean boost”, familiar from Newtonian mechanics. From now on I am going to set ¢ = 1,
and it will never appear again in any of our formulas. Exercise: how then do we recover the non-relativistic
limit?

Now, the point is the following: recall that in the section on rotational invariance, we realized that some
things (lengths of vectors, dot products, etc.) were invariant under rotations, and some things weren’t. We
now want to build the same formalism for Lorentz boosts: in other words, what is invariant under Lorentz
boosts?

I will first define the spacetime Minkowski metric 7,,, with “down” indices, which is defined to be

-1 0 0 O
poo| 0 100 as)
0 0 01
The point of the spacetime metric is to allow is to “lower” indices in the following way:
T = (20, 01,72, 23) = N’ = (=, 2!, 2%, 2) (2.10)



This is of course just matrix multiplication with the 1 matrix. This “lower” vector is called the covariant
vector. From now on, we will use the Einstein summation convention and not write down the sums explicitly;
whenever you see a repeated index you should imagine a sum, i.e.

Tp = anxy = N x” (2.11)

Now, let me define for you another object: n** with only up indices. This is defined as the matrix inverse of
the metric tensor with only down indices. Component-wise you can just take the inverse and find

-1 0 0 O
T o
0 0 01
(i.e. it’s numerically the same). But because it is the inverse, we can now invert (2.11) to find:
at =nz, (2.13)

So " raises indices. By the way, note that the statement that n** is the inverse of 77,,, can be written as

N 1y = 0f (2.14)
where 64 is the identity matrix:
10 00
01 00
no_
o = 00 1 0 (2.15)
0 0 01

Now the point of all of this fancy machinery is to allow us to construct an inner product between two vectors
z# and y* as follows: the dot product is defined to be

100 0
, oo 10 0oy
vy =aty . =2ty =000, ] (%>=—$°y°+wlyl+x2y2+w3y3 (2.16)
0 00 1

This is very similar to the familiar dot product that you know and love from ordinary R3, except for the
extra minus sign in front of the time component of the vector. This minus sign can be thought of as the
ultimate origin of the (...observationally quite obvious...) fact that time is different from space. You should
now convince yourselves that all of the following ways of computing this dot product give you the same
answer:
rey =aly, =yt =™ (2.17)
In other words, you can always contract an upper and a lower index in this way. This is the nice thing about
this notation; it basically makes it impossible to mess up the dot product, unless you write something like
this:
atyt (2.18)

with both indices up. You should not do this (and indeed even writing this leaves me with a terrible feeling
of discomfort).

Now let us ask the following question, which should now seem quite natural given our discussion of two
dimensional rotational invariance: what is the most general transformation of the coordinates that leaves
this dot product between two vectors invariant? In other words, what is the most general 4 x 4 matrix
A = A*, such that I can write:

/

ey = @Y )y =2ty =y @) =AY Y= Ay (2.19)



This is the analogue of (2.4). We see that the equation to be satisfied is:

2T ATpAy = 2Tny — (2.20)

or, in indices, the same equation becomes:

(2.21)

AF, mmA”a = Mo

A matrix satisfying this property is an element of a group called O(1, 3), or the Lorentz group. You should
imagine that this matrix “preserves the Minkowski metric”.

It is helpful to convince ourselves that the boost introduced back in (2.5) does satisfy this relation. Suppressing
the 223 directions, from there we have
1 —wv
no_
AY, =~ <—v 1 > (2.22)

and now just explicitly calculate that

S G N e | GO R o2

as claimed.

2.3 Group theory of Lorentz group

That was an example. Let us now understand the full set of A for which this is true. First, let’s take the
determinant of the equation (2.20). We then find that

(detA)?detn = detn — detA = £1 (2.24)

Thus the set of A fall into two disjoint sets, depending on the sign of their determinant. Let’s first consider
the set with positive determinant. These are the A’s that are continuously connected to the identity. As you
might remember from GMP, it is then a useful thing to consider the Lie algebra: to remind you how this
works, consider a rotation of the following form:

A = exp (M) (2.25)

where M is a 4 x 4 matrix which we can write in indices as M*,. We now want to understand the space of
possible M’s, which are the generators of the group. To understand this, let us start by assuming that M is
small; in that case we can Taylor expand in powers of it, to find:

A=1+M+O(M?) (2.26)
Now let us plug this into (2.21). We find that
(05 + M%) np (05 + MP5) = 1p (2.27)
which simplifies to
Mo + My + 1My = 1o (2.28)

and now finally we can write this as
Mo, + My =0 (2.29)

in other words, M (with both indices down) is antisymmetric. This turns out to be the only constraint on
the M’s. There are 6 linearly independent 4 x 4 antisymmetric matrices. Let’s call a basis for these matrices
M (@) where (a) runs from 1 to 6. Now consider the following objects

(MP7), = 760 — o] (2:30)

10



Now the notation is actually doing a lot of work here, so let me unpack it very carefully.

Here p and v are spacetime (or matrix) indices; thus for each value of p and o we have a 4 x 4 matrix.

Mpg:(.f.l. b oc d) (2.31)

However the indices p, o each run from 0 to 3, and from the definition above you can see explicitly that
MP? = —M?P. Thus the set of antisymmetric combinations of p and o label the 6 possible matrices that we
can have.

Now to make this seem a little less crazy let me write some examples out carefully. First let’s do some M'’s
who have a single 0 index. Expanding out the definition (2.30), we have

0 0 0

(MO)- = (2.32)

1
0
0
0

S O =

0
0
0

o O O

Note that notation M%! makes it clear which two dimensions are being mixed up. It won’t surprise you that
we have

0 010

0 0 0O
02\p __

0 0 0O

and so on. You can do the same for the other components (there are some interesting signs here and there).

We are now in a position to write down the most general Lorentz transformation, which is the exponential
of an arbitrary sum over all of these possible matrices. This takes the form

M = w,e MP? Awpo) = exp(wpe MP7) (2.34)

where w,, is a antisymmetric tensor w,, = —ws, that allows us to choose an arbitrary linear combination of
the M'’s.

Now the Lorentz transformations form a group, called the Lorentz group. As you recall from GMP, the
commutators of the generators play an important role. You can explicitly check from the definition (2.30)
that the commutators of the M’s are:

[M* MP?] = —n“P MM + gl MY 4 0”7 MM — pho VP (2.35)
This defines the Lorentz algebra.

Now let’s think physically about all of this. The transformations M? correspond to boosts in the z* direction:
for example if you work out

cosh(wpy) sinh(wpy) 0 0
Awor) = exp(wor M) = Smh(()wOl) COSh(gw()l) (1) 8 (2.36)
0 0 0 1

This is in fact exactly the same as (2.22) if we map the boost velocity v to the wg by sinhw = *ﬁ' wo1

is often called the rapidity.

Now let’s consider those M’s with both spatial indices. We find:

00 0 O

0 0 -1 0
12\p

0 0 0 O



Exponentiating this we get

1 0 0 0
|0 cos(wrz) —sin(wiz) O
Awrz) = 0 sin(wi2) cos(wiz) O (2.38)
0 0 0 1
1

which is clearly a rotation that mixes together the x! and the 22 directions and so is a rotation about the 3
axis. We see that the group of spatial rotations SO(3) is a subgroup of SO(1, 3).

Details on how to do these matrix exponentials will be given in the homework.

Finally let’s discuss those transformations which do not have detA = 1; from earlier, this means that they will

have detA = —1, and some examples are time reversal, which acts as T : (2°, 2!, 22, 23) — (=29, 21, 22, 23)

— so in matrix notation it is

-1 0 0 O
0 1 0 0
Ar = 0 0 1 0 (2.39)
0 0 0 1
Another important one is parity P, which changes the direction of all of the spatial directions: P :
(20,2, 22, 2%) — (20, —2!, —2?, —23). We then have
1 0 0 0
0o -1 0 0
Ar=19 0 -1 o0 (2.40)

These clearly both have determinant —1. One can get the whole Lorentz group O(1,3) by composing these
transformations with the infinitesimal ones studied above. Exercise: what is the form of parity if we had
only two spatial (and one time) dimension? Why is it different?

2.4 Translations and the Poincaré group

We have just understood Lorentz transformations, and I argued that these are the relevant generalization of
the idea of “rotation” to a relativistic spacetime. We should also now think about space-time translations,
i.e. transformations of the form:

ot — 2 =t —at (2.41)
where a* is a constant 4-vector. These are symmetries of (sufficiently small) regions of empty space in our
universe. Regarding a*: it’s 0-th component corresponds to a translation of the origin of time (saying that
the laws of physics are the same now and in the future) and its spatial components correspond to a translation
of the origin of space (saying that the laws of physics are the same in this classroom and in the next).

The combination of these together with the Lorentz transformations results in the following 10-parameter
symmetry group, called the Poincaré group:

ot — 2 = A g — o (2.42)

It has ten generators, the six M*? and four translations P,. In the next section I will write down more
explicitly how P, acts on fields defined on spacetime.

Finally, it’s worth noting that the translations don’t commute with the Lorentz transformations. The full
structure of commutators is:

[MM MP7] = =P MM + P MYT + "7 M0 — o MP (2.43)
[PH, MYP] = =tV PP + pHP PY (2.44)
[P*,P"]=0 (2.45)

12



This is called the Poincaré algebra. I have not quite proved the second of these relations for you yet. We
will see how to do so shortly.

2.5 The twin paradox

So just to recap everything that we have just studied — we looked at the symmetries of flat space with the
Minkowski metric R'® and learned that they have a pretty simple group theoretical structure involving some
antisymmetric matrices.

The thing I want you to keep in mind is that this really isn’t that different from ordinary rotations, there
are just some signs here and there. The signs are extremely important: they tell us that time is different
from space, which is very very true — but calculationally and conceptually Lorentz transformations should
not be much worse than normal rotations. As an example, let’s study the twin paradozr. picture of twin
paradox. We have one twin who stays at home, and thus lives on the spacetime trajectory AB — whereas
we have another, who goes to AC and then C'B. When the two twins meet up again, one of them is older!

(omg).

This is exactly like the distance paradox that I told you about, except that now the invariant notion of
time elapsed along each trajectory is measured with the Minkowski metric and not the regular metric. So

we have twin AB measuring time At, and other twin measuring 24/ (%)2 — Ax2. The twin paradox is really
not very different from the fact that the different sides of a triangle have different lengths, except that we

measure “length” with the Minkowski metric and not the familiar Euclidean one.

2.6 Realizing transformations on fields

We have seen how coordinate transformations act on the coordinates z, i.e. in an index-free notation as:
l'/ = Aw —Q (2.46)

Now let us come to the basic ingredient in this class: consider a scalar field ¢(z), which is a map ¢ :
RY3 — R. ¢(z) will also transform under coordinate transformations, so we can say that ¢(x) transforms in
a representation of the Poincaré group. We will now understand what this means.

2.6.1 Scalar fields

The basic rule is the following: when you go from an unprimed to a primed coordinate system, everything
changes, including the scalar field ¢(z). Let us call the new scalar field ¢/(z’): the primed field at the primed
point is determined by the unprimed field at the unprimed point, i.e.

¢'(2") = o(z) (2.47)
Let us work out explicitly how this works for translations, i.e. consider the transformation
't =t — at (2.48)
So we have that
¢'(a') = ¢(z — a) = ¢() (2.49)
where the last equality came from (2.47). We now have
§(@) = oz +a) (2.50)
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Let’s start with an infinitesimal translation; expanding the right hand side in powers of a we have

0
¢'(z) = ¢(z) + a“wﬁs(l‘) +0(a?) (2.51)
Thus we see that under an infinitesimal translation, the transformation of the scalar field is

¢(x) = ¢x) +09(x) | I¢(x) = a"Duo(x) | (2:52)

Now let us consider finite transformations. For any transformation continuously connected to the identity,
we can obtain the finite transformation by exponentiating some algebra element, i.e. there exists a P, such
that

@' (z) = ¢(z + a) = exp(a”P,)¢p(z) (2.53)
In this case, by expanding both sides in powers of a we see that
0
Pt =_— 2.54
B (2.54)

i.e. the generator of translations on the scalar field is by derivatives. This should seem philosophically
reasonable.

Let us now come to the slightly more complicated problem of Lorentz transformations. This is similar except
that the transformation of x is given by (2.34), i.e.

't = A x¥ = exp (wpe MP7)H &V (2.55)
Let us now expand this out for infinitesimal w; we have then:
2t =gt + 63t = 2t + we (MPO) 2V 4+ O(w?) (2.56)

Now we play the same game as before: we have

¢'(2") = p(x) (2.57)
Formally speaking, we would like to find a set of generators L,, so that the following expression is true:
¢'(x) = exp (wpe L*7) ¢(2) = (@) + wpe L7 (a) + O(w?) (2.58)

It’s perhaps a good time to understand the difference between L,, and M,,: here M,, is a set of 4 x 4
matrices which are linear operators which realize the Lorentz algebra on the coordinates x#. However L, is
going to be a set of differential operators, which are linear operators who realize the Lorentz algebra on the
field ¢(x). In the language