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1 Orientation

These are lecture notes written for the Physics for Bangladesh Quantum Field Theory online school, which
took place in Fall 2024; lecture videos for that course are available here.

They are based on a (very) abridged version of a course previously taught at Durham University on path
integral methods for quantum field theory, together with some extra material on path integrals for QM. The
full lecture notes for that course can be found here.

We will use the “mostly-plus” metric:

ηµν = ηµν = diag(+1,−1,−1,−1) (1.1)

This is the opposite to the convention I am used to, so everyone has to remain vigilant for sign errors. We
will mostly work in four spacetime dimensions (the “physical” value), but it is nice to keep the spacetime
dimension d arbitrary where possible.

Note that Greek indices µ, ν will run over time and space both, whereas i, j will run only over the three
spatial coordinates, and thus

xµ = (x0, xi) (1.2)

I will sometimes use x0 to denote the time component and sometimes xt, depending on what I feel looks
better in that particular formula.

I will always set ~ = c = 1.1 They can be restored if required from dimensional analysis.

2 Path integrals for quantum mechanics

Up till now you have studied quantum field theory by writing down fields as operators φ̂ etc. and then
imposing commutation relation on them. This approach – the “usual” one – for understanding a quantum
system is called canonical quantization. As it turns out, there is an alternative approach, involving what
is called a path integral: this is a very beautiful formulation of the physics, and like most things in physics
that are beautiful it also turns out to be quite practically useful in calculating things.

However before studying path integrals in quantum field theory, we will begin by studying path integrals for
quantum mechanics. My discussion here is taken mostly from Peskin and Schroeder Chapter 9 and Anthony
Zee Chapter 12.

2.1 Many holes in many screens

I want to motivate this by thinking about the double slit experiment, which everyone knows. To remind you,
imagine a slit with two holes A1 and A2, with a source S and an observer O. What is the probability to find
a particle after it has gone through the slit? By the superposition principle, we know that the amplitude to
find the particle at the end is

A(O) = A(S → A1 → O) +A(S → A2 → O) (2.1)

i.e. the sum of the amplitudes to go through either of the slits. (In elementary quantum mechanics we now
usually expand out these amplitudes explicitly in terms of plane waves, but we will not do that here).

1kB makes an appearance in a homework problem (or rather it would, if I hadn’t set it to 1).
2This book is amazing if you want to be motivated to do anything.
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Now imagine that we add another hole A3. Then, well the amplitude is clearly:

A′(O) = A(S → A1 → O) +A(S → A2 → O) +O(S → A3 → O) (2.2)

But now what if we add A4 and A5? Clearly we should add those two. But what if we add another screen,
with more slits Bi? (Sum up those paths as well). What if we fill all of space with screens? What if we put
so many holes in the screen that the screen is no longer there?

What all of this is really suggesting is that in general, should be a way to compute the amplitude in terms
of summing up all the ways that the particle can go from S to O. Apparently each of them will
contribute with some probability, and we should this should seem philosophically soothing: what is quantum
mechanics, after all, but the idea that a particle always does everything at once, with a given probability?

This philosophical musing can be elevated to physics we have a formula for it: in other words, how much
does each path contribute, and how do we “sum over all paths” anyway?

2.2 A simple finite dimensional integral to warm up

As it turns out, we will sum over paths by doing many integrals. Let’s warm up first. There are very few
integrals that we can do in closed form. One of them – a crucial one – is the Gaussian integral in one variable.∫ ∞

−∞
dxe−

ax2

2 =

√
2π

a
(2.3)

Also, if we add a linear shift in x in this form, the integral is still easy to do:∫ ∞
−∞

dxe−
ax2

2 −jx =

√
2π

a
exp

(
j2

2a

)
(2.4)

There is a basic generalization of this integral. I promise we will need it later, but I’m going to record it for
you now. Imagine that xi ∈ RN and consider the following integral:

I =

∫ N∏
i=1

dxi exp

(
−xiAijxj

2

)
(2.5)

where A is an N ×N matrix. After doing a small amount of work (homework problem!) you can show that
this integral is

I =

∫ N∏
i=1

dxi exp

(
−xiAijxj

2

)
=

(2π)
N
2

√
detA

(2.6)

Hint: diagonalize the matrix A and work in terms of its eigenvalues. Extra hint: this is worked
out in Zee’s book Quantum Field Theory in a Nutshell. Finally, we will need a generalization of this
– let me consider adding an extra vector Ji ∈ RN to this, so that we have

I[J ] =

∫ N∏
i=1

dxi exp

(
−xiAijxj

2
+ Jixi

)
=

(2π)
N
2

√
detA

exp

(
+

1

2
Ji(A

−1)ijJj

)
, (2.7)

where the last equality can be found by completing the square.

2.3 Derivation of path integral for quantum mechanics

We now present an actual derivation in the case of quantum mechanics. At the end the generaliztion to
quantum field theory will actually be very simple.
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Consider a quantum system with one coordinate q̂, canonical momentum p̂, and Hamiltonian:

Ĥ =
p̂2

2m
+ V (q̂) (2.8)

where V (q̂) is some potential which we don’t need to fix yet.

We would like to derive a formula for the following object: the probability for a particle to go from qa to qb
in time T , i.e.

〈qb|e−iĤT |qa〉 (2.9)

where |qa,b〉 are position eigenstates, i.e. they satisfy the equation q̂|qa〉 = qa|qa〉. We will also need momentum
eigenstates later, which satisfy the eauation p̂|pa〉 = pa|pa〉.

To derive a formula for this, the first thing we will do is introduce a very small time interval ε and break the
whole time T up into N ≡ T/ε small chunks, so that we write:

e−iĤT = e−iĤεe−iĤε · · · e−iĤε (2.10)

The next amazingly clever thing that we will do is, in between each of the small ε pieces, we will add a
complete set of states, i.e.

1 =

∫
dqk|qk〉〈qk| (2.11)

where k runs from 1 to (N − 1). In other words this now looks like

〈qb|e−iĤT |qa〉 = 〈qb|e−iĤε
∫
dqN−1|qN−1〉〈qN−1|e−iĤε

∫
dqN−2|qN−2〉〈qN−2|e−iĤε

∫
dqN−3|qN−3〉〈qN−3| · · · 〈q1|e−iĤε|qa〉

(2.12)
We can move all the integrals over to the left – thus we see that the thing to do is to evaluate many matrix
elements of the form

〈qk+1|e−iĤε|qk〉 (2.13)

In this notation its natural to rename qb = qN and qa = q0.

The answer depends on the exact form of H. Let’s start by doing it for the simple case of a free particle
which is just

H =
p̂2

2m
(2.14)

We want to calculate

〈qk+1|e−i
p̂2

2m ε|qk〉 (2.15)

What is the matrix of the momentum operator in between two position eigenstates? To understand this,
let’s first recall that

〈q|p〉 = eiqp
∫

dp

2π
|p〉〈p| = 1 (2.16)

The first equality just reminds us that the momentum eigenstate in the position basis is a plane wave. Now
we introduce a complete set of states to find

〈qk+1|e−i
p̂2

2m ε|qk〉 =

∫
dp

2π
〈qk+1|e−i

p̂2

2m ε|p〉〈p||qk〉 (2.17)

Now, we can act with the momentum operator on the eigenstate to just get that p̂2

2m |p〉 = p2

2m |p〉 (note the
loss of the hat!) and then take this number outside. Similarly, we use the inner product between q̂ and p̂ to
find

〈qk+1|e−i
p̂2

2m ε|qk〉 =

∫
dp

2π
e−i

p2ε
2m eip(qk+1−qk) (2.18)
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We are left with a Gaussian integral over p. But we know how to do Gaussian integrals, so we just refer back
to (2.4) find

〈qk+1|e−i
p̂2

2m ε|qk〉 =

(
−im
2πε

) 1
2

exp

(
im(qk+1 − qk)2

2ε

)
=

(
−im
2πε

) 1
2

exp

(
imε

2

(
qk+1 − qk

ε

)2
)

(2.19)

Now recall that this was just one of the many little bits that made up the full integral. Assembling all of
them together we find

〈qb|e−iĤT |qa〉 =

(
−im
2πε

)N
2
∫ N−1∏

k=1

dqk exp

(
imε

2

N−1∑
k=1

(
qk+1 − qk

ε

)2
)

(2.20)

Now, magically, we take the limit ε → 0. Recall that ε was a small increment in time. Note that from the
definition of the derivative and Riemann sum of integrals

lim
ε→0

∑
ε→

∫
dt lim

ε→0

qk+1 − qk
ε

→ dq

dt
(2.21)

and thus we can write the truly beautiful expression

〈qb|e−iĤT |qa〉 =

∫
[Dq] exp

(
i

∫ T

0

dt
q̇2

2

)
(2.22)

where the “integral over paths” is now formally defined as∫
[Dq] = lim

N→∞

(
−im
2πε

)N
2
∫ N−1∏

k=1

dqk q(0) = qa q(T ) = qb (2.23)

This is an amazing formula: let’s think about it for a second. What it says is that to compute the propagation

amplitude 〈qb|e−iĤT |qa〉, you should integrate over all possible paths that the particle can take from qa to qb,
where we also have a precise definition of the integral over paths in terms of a discretization (2.23). There is

also a precise formula for how much each path contributes – it contributes with a phase factor ei
∫ T
0
dt q̇

2

2 .

Now we did this calculation for a free Hamiltonian with Ĥ = p̂2

2m ; however we can now imagine putting the
potential V (q) back. It is not too hard to show that if we have the Hamiltonian

Ĥ =
p̂2

2m
+ V (q) (2.24)

then the calculation above is modified to read

〈qb|e−iĤT |qa〉 =

∫
[Dq] exp

(
i

∫ T

0

dt

(
q̇2

2
− V (q)

))
(2.25)

Note the crucial sign difference in front of the V (q). We normally write this as

〈qb|e−iĤT |qa〉 =

∫
[Dq] exp

(
i

∫ T

0

dtL(q, q̇)

)
L(q, q̇) =

1

2
q̇2 − V (q) (2.26)

i.e. it is the integral of the Lagrangian – i.e. the action S – which appears in the exponent!

This should again feel soothing. After all, classical physics can be studied in either the Lagrangian or the
Hamiltonian framework. But when we do quantum mechanics we usually only use the Hamiltonian. You
may have wondered what the “Lagrangian” way of doing quantum mechanics is. Now you know.
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Now sometimes we want to compute not just the propagation amplitude but also perhaps some expectation
values – e.g. how do we calculate this?

〈qb|e−iH(T−t2)q̂e−iH(t2−t1)q̂e−iHt1 |qa〉 T > t2 > t1 > 0 (2.27)

If you now go through the exact same derivation again, you will see that the insertion of the operators means
that when you do the path integral you should also evaluate the coordinate being path-integrated over at
some specific points, i.e.

〈qb|e−iH(T−t2)q̂e−iH(t2−t1)q̂e−iHt1 |qa〉 =

∫
[Dq]q(t2)q(t1) exp

(
i

∫ T

0

dtL(q, q̇)

)
(2.28)

There is something important happening here about the operator ordering on the left-hand side – note that on
the right hand side q(t2) and q(t1) are just numbers (specific parts of a path integral that we are integrating
over) – so it doesn’t matter what order you put them in. But on the left hand side they were quantum
operators where the ordering clearly matters.

How do we figure out what order to put them in? If you think about it, the ordering was actually determined
by time – t2 is to the left of t1 because it is later in time (i.e. closer to the final endpoint T ). In other words,
expectation values that we compute from a path integral always give us time-ordered correlation functions,
and sometimes we express this by saying

〈qb|T (q̂(t)q̂(t′))|qa〉 =

∫
[Dq]q(t)q(t′) exp

(
i

∫ T

0

dtL(q, q̇)

)
(2.29)

where we are now writing the operators q̂ in the Heisenberg picture.

Finally, note that this tells us how to go from qa to qb. However, we will often be interested not in going
from qa to qb but rather in going from one state |I〉 to another state |F 〉. It’s easy to write down a general
formula for that (exercise!). Let’s ask about something even simpler though – what if we want to go from the
vacuum |0〉 back to the vacuum |0〉? One way to do this is to note first that every state can be decomposed
in energy eigenstates |n〉 with energies En, including the position eigenstate |qa〉:

|qa〉 =
∑
n

cn|n〉 (2.30)

Let us set the zero of energy so that E0 = 0 (i.e. the ground state has energy zero). Now note that if we act

on this with e−iĤT (1−iε), with ε a small infinitesimal that is unrelated to that of the previous section, then
we find:

e−iĤT (1−iε)|qa〉 =
∑
n

cne
−iEnT−εTEn |n〉 (2.31)

Finally, consider taking T → ∞ – in that case the exponential damping by e−εTEn kills all of the excited
states with n > 0, leaving behind only the ground state!

lim
T→∞

e−iĤT (1−iε)|qa〉 → c0|0〉 (2.32)

The point of this is just that its very easy to get the vacuum – just evolve in slightly imaginary time! So this
gives us a simple way to evaluate the following object:

〈0|0〉 ∝ lim
T→∞

〈qb|e−iĤT (1−iε)|qa〉 = lim
T→∞(1−iε)

∫
[Dq] exp

(
i

∫ T

0

dtL(q, q̇)

)
(2.33)
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At this point it might not be clear why we are doing this – the thing to take away from here is that if we
make time slightly imaginary, then we project onto the vacuum. This will be useful later. So, for
example, if we want to calculate

〈0|T (q̂(t1)q̂(t2))0〉 =
limT→∞(1−iε)

∫
[Dq]q(t1)q(t2) exp

(
i
∫ T

0
dtL(q, q̇)

)
limT→∞(1−iε)

∫
[Dq] exp

(
i
∫ T

0
dtL(q, q̇)

) (2.34)

Here the division by the thing without the q’s inserted is important because usually we don’t actually manage
to keep track of the right normalization of the state.

2.4 Mathematical interlude

Above we have explained how to integrate over functions of one variable
∫

[Dq] – basically we did it by
discretizing it into a series of ordinary integrals and then doing each of them. This is sometimes called
functional integration (though I will usually call it a path integral).

There is another thing that we will often need to do, which is take a derivative with respect to a function.
Let’s explain how this works, first from normal calculus. Imagine that we have a vector xi ∈ RN . Then the
derivative obviously works like this:

∂xi

∂xj
= δij (2.35)

This leads to interesting expressions like this:

∂

∂xj
e
∑
i A

ixi =
∂

∂xj

(∑
k

Akxk

)
e
∑
i A

ixi (2.36)

=

(∑
k

Akδkj

)
e
∑
i A

ixi (2.37)

= Aje
∑
i A

ixi (2.38)

So, note what happened – I took a derivative with respect to one of the variables (xj), and this brought down
the variable multipling it (Aj). Here I am writing out the sums instead of using the Einstein summation
convention for a reason which will be evident shortly.

Now – we now need to move this up slightly by considering how we take derivatives with respect to functions.
A function q(t) is basically just many many variables. (If this bothers you, imagine discretizing the coordinate
t, as we did in the first lecture for space x). So we can imagine a functional derivative which acts like this

δq(t)

δq(t′)
= δ(t− t′) (2.39)

This is just the fancy functional version of (2.35). For physicists this expression completely defines the
functional derivative and you can use it to calculate anything you need. Note that in this analogy q(t) is just
like xi and q(t′) is just like xj , and the delta function δij is like δ(t− t′).

Continuing in this way, note that

δ

δj(t)

∫
dt′j(t′)q(t′) =

∫
dt′δ(t− t′)q(t′) = q(t) (2.40)

And finally, note from the same reasoning that

δ

δj(t)
exp

(∫
dt′j(t′)q(t′)

)
= q(t) exp

(∫
dt′j(t′)q(t′)

)
(2.41)
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We will use this in what follows.

3 Path integrals in free quantum field theory

With this under our belt, we will now move on to quantum field theory. Now that we understand the quantum
mechanics case this is really extremely simple. We will begin with a study of the free real scalar field φ. This
has action

S[φ] =
1

2

∫
d4x

(
(∂φ(x))2 −m2φ(x)2

)
=

1

2

∫
d4x φ(x)(−∂2 −m2)φ(x) (3.1)

The classical equations of motion arising from the variation of this action are

(∂2 +m2)φ(x) = 0 (3.2)

This is philosophically the same as the quantum mechanics problem studied earlier. To make the transition
imagine going from the single quantum-mechanical variable q to a large vector qa where a runs (say) from 1
to N . Now imagine formally that a runs over all the sites of a lattice that is a discretization of space, and
now qa(t) is basically the same thing as φ(xi; t) which is exactly the system we are studying above.

Now we would like to study the quantum theory. First, I point out that we can define a path integral in
precisely the same way as before, i.e. we can consider the following path-integral:

Z0 ≡
∫

[Dφ] exp (iS[φ]) (3.3)

Where S[φ] is the action written down above, and [Dφ] now represents the functional integral over all fields
and not just particle trajectories.

There are two main things that are nice about doing quantum field theory from path integrals the way
discussed above. One of them is honest, the other is a bit “secret”.

1. The honest one: all of the symmetries of the problem are manifest. The action S is Lorentz-invariant,
and it is fairly easy to see how these symmetries manifest themselves in a particular computation.
Compare this to the Hamiltonian methods used in the first half of the courst, where you have to pick
a time-slice and it always seems like a miracle when final answers are Lorentz-invariant.

2. The secret one: the path integral allows one to be quite cavalier about subtle issues like “what is the
structure of the Hilbert space exactly”. This is very convenient when we get to gauge fields, where
there are subtle constraints in the Hilbert space (google “Dirac bracket”) that you can more or less not
worry about when using the path integral (i.e. one can go quite far in life without knowing exactly
what a “Dirac bracket” is).

3.1 The generating functional

Now that the philosophy is out of the way, let us do a computation. We will begin by computing the following
two-point function:

〈0|T (φ(x)φ(y))|0〉 (3.4)

This object is called the Feynman propagator. It is quite important for many reasons; I will discuss them
later, for now let’s just calculate it. By arguments identical to those leading to (2.34), we see that we want

〈0|T (φ(x)φ(y))|0〉 = Z−1
0

∫
[Dφ]φ(x)φ(y) exp (iS[φ]) (3.5)
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To calculate this, it is convenient to define the same generating functional as we used for quantum mechanics

Z[J ] ≡
∫

[Dφ] exp

(
iS[φ] + i

∫
d4xJ(x)φ(x)

)
(3.6)

And we then see from functional differentiation that the two-point function is

〈0|T (φ(x)φ(y))|0〉 =
1

Z0

(
−i δ

δJ(x)

)(
−i δ

δJ(y)

)
Z[J ]

∣∣∣∣
J=0

(3.7)

Each functional derivative brings down a φ(x). Now we will evaluate this function. We first note the following
crucial identity from a few hours ago, which I have embellished with a few i’s here and there∫ N∏

i=1

dxi exp

(
−xiAijxj

2
+ iJixi

)
=

(2π)
N
2

√
detA

exp

(
−1

2
Ji(A

−1)ijJj

)
(3.8)

We note from the form of the action (3.1) that the path integral Z[J ] we want to do is of precisely this form,
where we do our usual “many integrals” limit and where a labels points in space and the operator A is

A = i
(
∂2 +m2

)
(3.9)

We conclude that the answer for Z[J ] is

Z[J ] = det

(
∂2 +m2

−2πi

)− 1
2

exp

(
−1

2

∫
d4xd4yJ(x)DF (x, y)J(y)

)
(3.10)

where I have given the object playing the role of A−1 a prescient name DF . It is the inverse of the differential
operator defined in (3.9) and thus satisfies

i
(
∂2 +m2

)
DF (x, y) = δ(4)(x− y) (3.11)

This is an important result. Let us first note that the path integral is asking us to compute the functional
determinant of a differential operator. This is a product over infinitely many eigenvalues; it is quite a beautiful
thing but we will not really need it here, so we will return to it later.

The next thing to note is that the dependence on J is quite simple; the exponential of a quadratic. Indeed,
inserting this into (3.7) we get

〈0|T (φ(x)φ(y))|0〉 = DF (x, y) (3.12)

Thus, we have derived that the time-ordered correlation function of φ(x) is given by the inverse of i(∂2 +m2)!

Let us now actually calculate this object. We first go to Fourier space:

DF (x, y) =

∫
d4p

(2π)4
e−ip·(x−y)D̃F (p) (3.13)

Inserting this into (3.11) we find∫
d4p

(2π)4

(
−p2 +m2

)
e−ip·(x−y)D̃F (p) = −iδ(4)(x− y) (3.14)

We now see that we want the object in momentum space D̃F (p) to be proportional to p2 −m2 so that we
can use the identity

∫
d4peip·x = (2π)4δ(4)(x). Getting the factors right, we find the following expression for

the propagator in Fourier space:

D̃F (p) =
i

p2 −m2
(3.15)

This is the propagator that we know and love from the earlier part of the course.

Now we can use path integrals to re-derive the Feynman rules – this is a different way of doing it then we
did it using the interaction picture. Sadly there is no time to re-explain it here.

End of first lecture.
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4 Abelian Gauge Theories

Now that we have understood fermions, we will move on to gauge theories. We warm up with Abelian gauge
theories before moving on to the full glory and beauty of non-Abelian gauge theories for the final part of the
course.

4.1 Gauge invariance

We will now first understand what a gauge symmetry is, starting from the simplest example. First consider
a theory with a global U(1) symmetry: it is nice to consider the Dirac theory to start,

S[ψ, ψ̄] =

∫
d4x ψ̄(x)(i/∂ −m)ψ(x) (4.1)

This theory is clearly invariant under a global U(1) phase rotation, which is

ψ(x)→ ψ′(x) = eiΛψ(x) ψ̄(x)→ e−iΛψ̄(x) (4.2)

I emphasize that the symmetry parameter Λ here is a constant in spacetime, which is why we call it a global
symmetry. I also want to emphasize that two field configurations that are related by the symmetry are both
physical field configurations. If ψ represents something that we integrate over in the path integral, then so
does ψ′.

Now here is an idea, which I simply state without a huge amount of motivation: let’s do something different.
Let us instead demand that we have a theory that is invariant under a symmetry where the symmetry
parameter varies in spacetime:

ψ(x)→ ψ′(x) = eiΛ(x)ψ(x) (4.3)

This is called a local symmetry, or a gauge symmetry. As I will explain later, it should probably really be
called a gauge redundancy, but I will not use that language in this course and continue to call it a gauge
symmetry. Things that are invariant under this symmetry are called gauge-invariant.

Now, let’s understand what is and is not gauge-invariant. For example: ψ(x) itself is not gauge invariant,
but it transforms under gauge transformations in a simple way (by an overall rotation).

The mass term
mψ̄′(x)ψ′(x) = mψ̄(x)e−iΛ(x)e+iΛ(x)ψ(x)→ mψ̄(x)ψ(x) (4.4)

clearly is gauge invariant. Note that it would not have been if the field and its conjugate were evaluated at
different points, as then the gauge parameter would not have canceled.

Now how about the derivative term in the action? Now we run into an issue that has to do with the local
character of the gauge transformation: note that if we try to take a derivative we find

∂µψ
′(x) = ∂µ

(
eiΛ(x)ψ(x)

)
= eiΛ(x) (i∂µΛ + ∂µ)ψ(x) (4.5)

Something very bad has happened because Λ(x) depends on space, we have picked up an extra term ∂µΛ.
There is no obvious way to get rid of this, and thus we conclude that the Dirac action as written (4.12) is
not gauge invariant.

This is a similar problem: the derivative of ψ no longer has nice gauge transformation properties. To fix it,we
will do the same thing that we did previously: we define a new object, called the gauge covariant derivative:

Dµψ ≡ (∂µ + ieAµ)ψ (4.6)
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where I have introduced a new field Aµ, called the gauge field or the gauge connection. (GR students may be
tempted to compare it to the Christoffel connection: this analogy will get even closer when we do non-Abelian
gauge theories soon). I have also chosen to take out a factor e for later convenience.

We will demand that the gauge-covariant derivative of ψ has a nice gauge transformation property, i.e. for
invariance purposes let us demand:

Dµψ → D′µψ
′ = eiΛ(x)Dµψ, (4.7)

without any awkward inhomogenous piece. Let’s see what we require A′µ to do to make this happen. Ex-
panding out we have

D′µψ
′ =

(
∂µ + ieA′µ

)
eiΛ(x)ψ(x) = eiΛ(x)

(
i∂µΛ + ieA′µ + ∂µ

)
ψ(x) (4.8)

= eiΛ(x) (∂µ + ieAµ)ψ(x) (4.9)

where the last equality is our demand. We see that this will work out if and only if:

A′µ = Aµ −
1

e
∂µΛ(x) ψ′(x) = eiΛ(x)ψ(x) , (4.10)

where I have also written down the transformation property of ψ, as the two are related. This is the gauge-
transformation of Aµ: if it transforms in this way, then our gauge-covariant derivative does indeed do what
we want it to do. Note that now the following term:

ψ̄(x)γµDµψ(x)→ ψ̄′(x)γµD′µψ
′(x) = ψ̄(x)e−iΛ(x)γµe+iΛ(x)Dµψ(x) = ψ̄(x)γµDµψ(x) (4.11)

is gauge-invariant, and thus we have succeeded in taking a derivative in a gauge-invariant way. With this,
we see that we can write a fully gauge-invariantized-Dirac-action:

S[ψ, ψ̄, A]Dirac =

∫
d4x ψ̄(x)(i /D −m)ψ(x) (4.12)

where we just promote the partial to a gauge-covariant derivative. To do this, we had to invent another field
called Aµ. This is the price of gauge-invariance.

But now that we have this field Aµ, we may ask what more we can do with it. To see this, let’s first note that
Dµψ has a nice gauge-transformation property, and thus so will DµDνψ. It thus makes sense to consider the
commutator of the two derivatives:

[Dµ, Dν ]ψ = [∂µ, ∂ν ]ψ + ie([∂µ, Aν ]− [∂ν , Aµ])ψ (4.13)

= ie (∂µAν − ∂νAµ)ψ (4.14)

Notice that this commutator of derivatives is (when acting on ψ) actually not a derivative at all: it is just a
number multiplying ψ. Let’s call this number ieFµν , i.e.

Fµν ≡ ∂µAν − ∂νAµ (4.15)

Fµν is called the field-strength of the gauge field. Now, purely abstractly, we know that Fµν must be gauge-
invariant. That’s because we have

[Dµ, Dν ] = ieFµν (4.16)

Now consider acting this equation on ψ and then doing a gauge-transformation on both sides: we know how
both sides transform

eiΛ(x)[Dµ, Dν ]ψ = ieFµνe
iΛ(x)ψ (4.17)

and we can now cancel the eiΛ(x), which immediately implies that Fµν is gauge invariant. Of course we
could also simply directly use the gauge transformation property of Aµ (4.10) directly, but this more abstract
viewpoint will be useful when we get to non-Abelian gauge theories.
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It is not hard to convince yourself that random derivatives of Aµ, i.e ∂µAν by itself, are actually not gauge-
invariant. So let us now try to write down the most general renormalizable gauge-invariant action involving
our new friend Aµ and ψ(x). It turns out the most general parity-invariant3 action is

S[ψ, ψ̄] =

∫
d4x

(
−1

4
FµνFµν + ψ̄(x)(i /D −m)ψ(x)

)
(4.18)

The first term is gauge-invariant since Fµν is gauge invariant. We have discussed the second term extensively.

How about a mass term for the gauge field, e.g.

M2AµA
µ (4.19)

It is easy to see that this is not gauge-invariant, and thus one says that gauge-invariance forbids bare mass
terms for gauge fields. Thus we conclude that the most general gauge-invariant and P -invariant action with
a gauge field and a single fermion is just

S[ψ, ψ̄, A]QED =

∫
d4x

(
−1

4
FµνFµν + ψ̄(x)(i /D −m)ψ(x)

)
(4.20)

This is the action of QED. Note that we have been led to it purely from symmetry principles: there is nothing
else that we could have written down.

4.2 Some classical aspects of Abelian gauge theory

For a little while, let us focus on the theory given by just the first part of the action above. As you already
know, this turns out to be ordinary Maxwell electrodynamics:

S[A]Maxwell =

∫
d4x

(
−1

4
FµνFµν

)
(4.21)

Let’s figure out the classical equations of motion: varying this action with respect to Aµ we find that these
equations of motion are just

∂µF
µν = 0 (4.22)

If we pick a time direction and write this down in Lorentz-non-invariant notation F 0i = Ei, Bi = 1
2ε
ijkFjk

then these are simply Maxwell’s equations, and thus this is the Lagrangian for free EM with no matter.

Now, we should note an interesting fact: recall the Klein-Gordon equation of motion for a free scalar field

∂2φ = 0 (4.23)

This defines what is called a well-defined Cauchy problem, which means that if you pick a time t = 0 and
specify initial data φ(t = 0, ~x) as well as ∂tφ(t = 0, ~x), then you can use the equations of motion to propagate
φ forwards in time unambiguiously. This is nice.

The fundamental degree of freedom for the Maxwell equation is Aµ(x), so this is the analog of φ(x). The
above nice time evolution properties of the Klein-Gordon equation are not satisfied by the Maxwell equation.
This can be understood from staring at the components of the equation, but there is an indirect route: note
that if Aµ is a solution to the equations of motion, then so is Aµ− 1

e∂µΛ(x), where Λ is any arbitrary function

3Ok, this is not strictly true, there is another parity-invariant action: you could imagine adding a term proportional to
θεµνρσFµνFρσ . P flips θ → −θ; however it turns out that when θ is correctly normalized it is a periodic variable with
periodicity 2π, which means that there is are two P -invariant points, one with θ = 0 and one with with θ = π, as −π + 2π = π.
This seems like a ridiculous technicality that nobody should ever worry about, except that actually a lot of beautiful physics
associated with something called a “topological insulator” arises from the θ = π point.
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of spacetime. If we pick Λ(t, ~x) to be a function that vanishes near t = 0 but is different at late t, it is clear
that the same initial data at t = 0 can lead to two completely different Aµ’s at late time, where they differ
by a gauge transformation.

What do we do with this? It looks like our theory has no predictive power, in that knowing what happens at
t = 0 does not fix what happens at late t. We can save our classical theory by making the following assertion:

Things that are not gauge-invariant are not physical.

So it is okay that we cannot unambiguously solve for their time evolution. It is only things that are gauge-
invariant – in this case, the components of Fµν – that are physical, and you know from your elementary EM
course that there is absolutely no issue solving for their time evolution.

Let’s be a bit more explicit. Writing Fµν = ∂µAν − ∂νAµ, we find

∂µ (∂µAν − ∂νAµ) = 0 (4.24)

As mentioned earlier, this is not a well-defined problem for time evolution of Aµ. We need to fix a gauge:
one choice is Lorenz gauge4:

∂µA
µ = 0 (4.25)

(You can show that any Aµ can be placed in this form by a gauge transformation). If we do this, then we
find the equation

∂µ∂
µAν = 0, (4.26)

which is now a perfectly nice wave equation that propagates all components of Aµ in time. It is also a wave
equation with no mass term: in Fourier space, we get an equation that looks like:

(ω2 − k2)Aν = 0 (4.27)

and thus the on-shell energy of a single photon is ωk = k: the photon is massless.

However, it is still not true that all components are physical, as there is a residual gauge invariance in Lorenz
gauge. I will not review here how this works, but you recall from elementary EM that for a plane wave with
momentum kµ it is the transverse components of Aµ to the momentum that are physical, and thus there are
two physical polarizations. (One way to check this is to note that only those contribute to the field strength
tensor; more formally you can find a way to fix the residual gauge invariance in Lorenz gauge).

With this classical understanding under control, we now turn to the quantum theory, where all these subtleties
turn out to play a crucial role.

4.3 Quantizing QED

We turn now to the quantum theory. The new thing to do is to quantize the Maxwell action, i.e. we want to
perform the following path integral:

Z =

∫
[DA] exp

(
i

∫
d4x

(
−1

4
FµνF

µν

))
(4.28)

We will ultimately be interested in quantizing the theory with the fermions also included, but first we will
focus on this. As we understand in detail by now, the propagator is always equal to the inverse of the operator

4Poor Lorenz is an entirely different person from Lorentz.
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appearing in the quadratic part of the Lagrangian: let us thus write this in a useful way:

S[A] =

∫
d4x

(
−1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

)
(4.29)

=

∫
d4x

1

2
(Aν∂µ∂

µAν −Aν∂ν∂µAµ) (4.30)

=

∫
d4x

1

2

(
Aµ
(
∂2ηµν − ∂µ∂ν

)
Aν
)

(4.31)

Now whenever we do a functional integral, we want to invert the differential operator that appears in the
quadratic part of the action. Thus we seek to find a photon Feynman propagator DF

µν that satisfies:(
∂2ηµν − ∂µ∂ν

)
DF
νρ(x, y) = iδµρ δ

(4)(x− y) (4.32)

There is just one problem with this: no such DF
νρ exists, because the differential operator has no inverse.

This is perhaps clear if we go to momentum space, when this equation becomes

(p2ηµν − pµpν)DF
µν(p) = −iδµν (4.33)

But the matrix on the left-hand side has many zero eigenvalues: in fact, consider acting with it on any test
function of the form pµα(p):

(p2ηµν − pµpν)pµα(p) =
(
p2pν − p2pν

)
α(p) = 0 (4.34)

Thus the operator has a non-trivial kernel and cannot be inverted.

Physically, it should be clear that the issue is arising from the gauge transformations. The point is that any
field configuration that is pure gauge

Aµ =
1

e
∂µΛ (4.35)

has field strength Fµν = 0, and thus has vanishing action. Thus when performing the path integral over
functions in this “pure gauge” direction, the action does not oscillate and nothing suppresses their contribution
to the path integral, which thus ends up diverging badly. This divergence is manifesting itself in the non-
invertibility of the differential operator.

This is a serious issue. There is a correct way to fix this, called the Fadeev-Popov procedure, but sadly I have
no time to really explain it – the end result is that we simply end up adding a term of this form to the action:

Sgauge−fixed[A] =

∫
d4x

(
−1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2

)
(4.36)

Thus the kinetic term has been modified, and of course now we can now invert the propagator. We go to
Fourier space, and the equation to solve is then:(

−p2ηµν +

(
1− 1

ξ

)
pµpν

)
Dνρ
F (p) = iδρµ (4.37)

This sort of computation comes up again and again in field theory, so in this case I will work it out: consider
the most general form of DF . It is a tensor, and the only two tensor structures are ηµν and pµpν , so we the
answer must be of the form

Dνρ
F (p) = A(p)ηνρ +B(p)

pνpρ

p2
(4.38)

where I have taken out some factors of p to make the final thing look nicer. Now we plug this ansatz into
the equation and expand. We find

− p2A(p)δρµ + pµp
ρ

(
A(p)

(
1− 1

ξ

)
− B(p)

ξ

)
= iδρµ (4.39)
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Figure 1: New Feynman rules involving photons

(Note taking away the gauge-fixing term corresponds to ξ → ∞, in which case there is clearly no solution).
We find that A = − i

p2 , B = − i
p2 (ξ − 1), and thus:

Dνρ
F (p) = − i

p2

(
ηµν − (1− ξ)p

µpν

p2

)
(4.40)

This is the Feynman propagator for photons, carefully derived.

What is ξ? The truth is: it is a gauge-fixing parameter, and so it does not matter. You can set it to any
value you like, and you have to get the same answer for any calculation. This turns out to be guaranteed by
the Ward identity in QED – basically dotting kµ into any amplitude has to annihilate it. Thus people with
truly formidable calculational powers will keep it arbitrary, and its cancellation at the end is a good check
on the computation.

People (like me) with less formidable calculational powers will often find it convenient to set it to 1 (this is
called Feynman gauge) as this makes the photon propagator have fewer terms in it.

This is it! Now you have carefully derived the photon propagator. This is the only tricky thing: from here
we can rederive the full machinery of the Feynman rules. If we don’t have the fermion then the theory is
free; if we do have the fermion then the action is

S[ψ, ψ̄, A]QED =

∫
d4x

(
−1

4
FµνFµν + ψ̄(x)(iγµ(∂µ + ieAµ)−m)ψ(x)

)
(4.41)

and thus we have the fermion Feynman rules that we wrote down last time and the following new rules for
the photon:

• The photon propagator is − i
p2

(
ηµν − (1− ξ)p

µpν

p2

)
• The photon-electron vertex is −ieγµ.

(If you like, you can carefully derive the interaction vertex by doing the usual business with the sources, etc
– no new effects enter from the gauge field).

It is important to note that the interaction vertex came from the covariant derivative, and thus we were not
free to fix its form. This is an underlying principle: gauge symmetry fixes the possible interactions that can
happen.
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5 Non-Abelian gauge theories

Now that we understand Abelian gauge theories, we are going to move on to non-Abelian gauge theories.
They are a powerful and nontrivial generalization of the same basic idea, and play a very important role in
the Standard Model.

5.1 What is a group?

A tiny bit of abstraction first. What is a group? A group G is something that has elements in it g1, g2, · · · ∈ G
so that there is some way to combine two elements to get a third element in the group. (There are also some
formal properties – every element has an inverse, the identity element exists, etc. but these will be common
sense for us). This combination is called the “group operation” and usually for us the operation will just be
the product, i.e.

g3 = g1g2 g1,2,3 ∈ G (5.1)

Here are some examples:

1. The group U(1) generated by numbers eiα with α ∈ R. Clearly if we have two of these and we take

eiα1eiα2 = eiα1+iα2 ∈ U(1) (5.2)

Note that here it does not matter in which order we take the product,

eiα2eiα1 = eiα2+iα1 = eiα1eiα2 (5.3)

i.e. we say the group operation is commutative and we call this kind of group Abelian.

2. The group SU(2), which means “unitary 2×2 matrices M that have determinant 1. Recall that unitary
means U†U = 1. If we take two such U1,2 ∈ SU(2) and take their matrix product, then we do get a
third:

U1U2 = U3 ∈ SU(2) (5.4)

However there is a very important distinction here: the group operation is now not Abelian, i.e.
generically we have

U1U2 6= U2U1 (5.5)

Groups with this property – where the group action is not commutative – are called non-Abelian.

It turns out everyone is intimately familiar with non-Abelian groups – e.g. this group SU(2) ≈ SO(3),
i.e. the group of 2 × 2 unitary matrices is more or less (or rather, locally5) the same as the group of
rotations of ordinary objects in 3d. And if you play with doing rotations in different orders, its quite
clear that this group is not commutative.

It turns out that the previous part was constructing a gauge theory for the group U(1). It turns out that we
can make a gauge theory for any group. We will now construct a gauge theory for a non-Abelian group,
where we will take the example of SU(2).

5.2 Non-Abelian gauge invariance

An abstract way of formulating the discussion above was the following: a gauge transformation in the Abelian
case was a map from spacetime to the group U(1), i.e. something like eiΛ(x).

5The precise relation is that SO(3) = SU(2)/Z2, and this Z2 is basically the reason we have fermions.
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Now we will generalize the whole thing to non-Abelian gauge theory. We will now try to formulate a theory
that is invariant under non-Abelian gauge transformations, which are maps U(x) from spacetime to the group
G = SU(2).

We will first need to understand how to discuss an arbitrary element of SU(2). Though I say SU(2) it turns
out that everything will generalize to SU(N) immediately with no changes. First, it is a fact that we can
write an arbitrary element of SU(2) like this:

U = exp(iαata) (5.6)

where there are three t’s, and they are the Pauli matrices ta = 1
2σ

a, or more explicitly:

t1 =
1

2

(
0 1
1 0

)
t2 =

1

2

(
0 −i
i 0

)
t3 =

1

2

(
1 0
0 −1

)
(5.7)

Exercise: check that this matrix is both unitary and has determinant 1.

These t’s satisfy the following commutation relation:

[ta, tb] = ifabctc fabc = εabc (5.8)

(I am calling it fabc and not εabc because this notation is standard in the non-Abelian gauge theory literature).

Now let us imagine having a fermion ψ that transforms like this under SU(2) i.e. if U(x) ∈ SU(2), we want
to have the symmetry property:

ψ(x)→ ψ′(x) = U(x)ψ(x), (5.9)

where ψ is now an 2-component complex vector, as well as a Dirac spinor (so it technically has 4×2 complex
components, but we will suppress that information here).

Again, we can imagine writing down the Dirac Lagrangian:

S[ψ, ψ̄] =

∫
d4xψ̄

(
i/∂ −m

)
ψ (5.10)

It is clear that this is invariant under ψ(x) → Uψ(x), ψ̄(x) → ψ̄(x)U† if U is constant; however, if U(x)
depends on space, then clearly the derivatives will not work out. The solution is clear: we now need to
construct a non-Abelian gauge-covariant derivative.

We will do this as follows: the property that we want for the non-Abelian covariant derivative is

Dµψ(x)→ D′µψ
′(x) = U(x)Dµψ(x) (5.11)

in other words, we want the whole thing to transform homogenously, i.e. with an overall factor of U from
the left. From the U(1) case, it should be clear that we will need a new object to do this: our new object is
going to be the non-Abelian gauge field:

Aaµ(x) (5.12)

where a runs from 1 to 3. The covariant derivative acting on ψ is taken to be

Dµψ(x) ≡
(
∂µ − igAaµta

)
ψ(x) (5.13)

where g is a number called the gauge-coupling, and is analogous to the e that we defined in the U(1) case.
Now let us see what property we require Aaµ to have for (5.11) to work out:

D′µψ
′(x) =

(
∂µ − igA

′a
µ t

a
)
U(x)ψ(x) (5.14)

= (∂µU)ψ + U(x)∂µψ − igA
′a
µ t

aU(x)ψ(x) (5.15)

≡ U(x)
(
∂µ − igAaµta

)
ψ(x), (5.16)
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where the last equality is what we want to be true. There is an interesting wrinkle here, because on the last
line U(x) is all the way on the left, whereas on the previous line it is always on the right, and because of the
non-Abelian-ness we cannot commute it through. Nevertheless, we can still solve for A

′a
µ to find

∂µU − igA
′a
µ t

aU = U(−igAaµta) → A
′a
µ (x)ta = U(x)

(
Aaµ(x)ta +

i

g
∂µ

)
U†(x) (5.17)

This is the transformation of the non-Abelian gauge field under a finite gauge transformation parametrized
by U(x). Before discussing what it means, it is instructive to also work out the infinitesimal version of the
gauge transformation. To do this we parametrize U(x) as

U(x) = exp(iαa(x)ta) (5.18)

and then work to first order in αa, i.e. we discard all terms of O(α2) or higher. The fermion transformation
law (5.9) is simply

ψ′(x) = (1 + iαa(x)ta)ψ(x) (5.19)

whereas the gauge field one is slightly more intricate:

A
′a
µ (x)ta = exp

(
iαb(x)tb

)(
Aaµ(x)ta +

i

g
∂µ

)
exp (−iαc(x)tc) (5.20)

= Aaµ(x)ta + i[αb(x)tb, Aaµt
a] +

1

g
∂µα

ctc (5.21)

= Aaµ(x)ta − αbf bactcAaµ +
1

g
∂µα

ctc (5.22)

Relabeling some indices and equating terms we find that the individual components of the gauge field trans-
form as transform as

A
′a
µ (x) = Aaµ + fabcAbµα

c +
1

g
∂µα

a (5.23)

So, what is going on? Here are a few important points:

1. The last term looks like the transformation of an Abelian gauge field.

2. The first term is different: what it means is that the non-Abelian gauge field points in a direction
in group space (i.e. it has an a index), and the non-Abelian transformation rotates the direction
that it points in. In fact its kind of simple to understand what that term means: if you imagine the
transformation field αc as a vector pointing in R3, then that term as though the gauge field Aaµ is trying
to rotate about that axis, i.e.

δ ~Aµ ≈ ~Aµ × ~α (5.24)

3. As a brief aside: I will sometimes write Aµ with no superscript to mean Aµ ≡ Aaµt
a, i.e. it is a

matrix-valued vector field.

5.3 The Yang-Mills field-strength and action

So we have understood how to take non-Abelian covariant derivatives, and we have seen that this requires
us to introduce a non-Abelian gauge field Aaµ. We would now like to build an action out of these gauge
fields. We will do this in pretty much the same way as in the Abelian case: in particular, let’s consider the
commutator of two covariant derivatives acting on ψ. From the above discussion, we know that under a
gauge transformation:

[Dµ, Dν ]ψ(x)→ U(x)[Dµ, Dν ]ψ(x) ≡ U(x)
(
−igF aµνta

)
ψ(x) (5.25)
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i.e. there are no pesky derivative terms. Thus this object has nice transformation properties and is a natural
thing to think about. We will call it the field-strength tensor, and as the notation suggests, it is only a
multiplicative operator acting on ψ(x), not a differential one. Let’s work it out:

[∂µ − igAaµta, ∂ν − igAbνtb]ψ =
(
−ig

(
∂µA

a
ν − ∂νAaµ

)
ta − g2AaµA

b
ν [ta, tb]

)
ψ (5.26)

=
(
−ig

(
∂µA

a
ν − ∂νAaµ

)
ta − ig2AbµA

c
νf

bcata
)
ψ (5.27)

Comparing this to the definition, we see that in components the field-strength is

F aµν =
(
∂µA

a
ν − ∂νAaµ

)
+ gAbµA

c
νf

abc (5.28)

Importantly, from our previous study we know that under a gauge transformation we have

Fµν = F
′a
µνt

a = U(x)F aµνt
aU†(x) . (5.29)

Thus Fµν transforms in the adjoint. As explained above, the infinitesimal version of this transformation is

F
′a
µν = F aµν − fabcαbF cµν +O(α2) (5.30)

It is possible to check these properties explicitly by directly transforming the quantities in (5.28); there is a
non-trivial cancellation between the terms that makes this possible, and thus the precise factors of g etc. are
important.

However, now that we have this object, we can construct a non-Abelian-gauge-invariant action for the gauge
field. This is essentially completely unique – just consider taking the trace of the matrix-valued field strength
squared.

SYM[A] =

∫
d4x

(
−1

2
tr (FµνF

µν)

)
(5.31)

This is the celebrated Yang-Mills action. Let’s check its properties: due to (5.29), under a gauge transfor-
mation we have

tr(F ′µνF
′µν) = tr

(
U(x)FµνU

†(x)U(x)FµνU†(x)
)

= tr(FµνF
µν) (5.32)

and so it is clearly invariant. It’s also convenient to work it out in components: we have

− 1

2
tr
(
F aµνt

aF bµνtb
)

= −1

2
F aµνF

bµνtr
(
tatb

)
(5.33)

From your group theory course, it is always possible to pick the generators of SU(N) so that we have

tr
(
tatb

)
=

1

2
δab (5.34)

which is a convention we will use – we then have that the action is

SYM[A] =

∫
d4x

(
−1

4
F aµνF

aµν

)
(5.35)

where we sum over all the indices of the gauge field. This is it. Note that since F aµν is non-linear in the field
Aµ, this is a non-trivial interacting theory already. In the next section we will study the quantum theory –
but first, let’s study a few classical aspects.

Consider varying this action: we have

δSYM[A] =

∫
d4x

(
−1

2
F aµνδF aµν

)
(5.36)

=

∫
d4x

(
−1

2
F aµν(∂µδA

a
ν − ∂νδAaµ + g(δAbµA

c
ν +AbµδA

c
ν)fabc)

)
(5.37)

=

∫
d4x

(
∂µF

aµν + gfabcAbµF
cµν
)
δAaν (5.38)
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From here we can read off that the equations of motion are

∂µF
aµν + gfabcAbµF

cµν = 0 (5.39)

Note that this equation is actually quite elegant – we are trying to take the derivative of an object F aµν that
transforms in the adjoint, so this is actually the gauge-covariant divergence F aµν :

DµF
aµν = 0 (5.40)

This is the classical Yang-Mills equation. Despite the deceptive notation, it’s a very nonlinear and messy
equation.

We can of course also couple matter to these gauge fields. For example we started work with the fermions,
so we can easily write down

S[A,ψ, ψ̄] =

∫
d4x

(
−1

2
tr(F 2) + ψ̄

(
i /D −m

)
ψ

)
(5.41)

where the gauge covariant derivative for the fermions is

Dµψ = ∂µψ − igAaµtaψ (5.42)

Note that again this is the most general renormalizable action, and it depends on only a single parameter g,
the gauge coupling (which is hidden in the covariant derivatives).

5.4 Quantizing non-Abelian gauge theories

Thus motivated, we turn now to the quantum theory. Note that it appears that we have 3 types of massless
gauge boson, one for each of the 3 generators of SU(2). Let’s now work out the Feynman rules for pure
Yang-Mills theory, i.e.

S[A] =

∫
d4x

(
−1

4
F aµνF

aµν

)
(5.43)

We first recall that since we have

F aµν =
(
∂µA

a
ν − ∂νAaµ

)
+ gAbµA

c
νf

abc (5.44)

this theory is no longer quadratic, and thus even before we add any matter it is already interacting. Again,
the interaction structure is completely fixed by gauge-invariance. Expanding out the action we see that we
have

S[A] =

∫
d4x

(
−1

4

(
∂µA

a
ν − ∂νAaµ + gAbµA

c
νf

abc
) (
∂µA

a
ν − ∂νAaµ + gAdµA

e
νf

ade
))

(5.45)

Thus there will be an interaction vertex that couples three A’s and one that couples four of them.

We can work out the vertices through the usual techniques, which I will not go through in detail on the board
as it is just bookkeeping. Note that this the first example we have seen of an interaction term that involves
a derivative of the field, and this means that the Feynman rule will explicitly involve the momentum in the
line connected to the vertex.

This structure is highly constrained – if you just wrote out the most general interaction there would be many
other possible terms. In particular, note that it all depends on a single parameter g.

Now that we have all the vertices worked out, we need to again find a gauge-fixed propagator for the gauge
field. After a great deal of work we would eventually find:

Dab
µν(p) = − i

p2

(
ηµν − (1− ξ)pµpν

p2

)
δab (5.46)

20



Figure 2: Interaction vertices for non-Abelian gauge fields
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Figure 3: Propagator for non-Abelian gauge fields

exactly the same as the Abelian one, except with an extra δab making it diagonal in gauge-field space. In
this case the choice of gauge parameter ξ = 1 is called Feynman-t’Hooft gauge.

Here there is yet another wrinkle which I’m not telling you about: dealing with non-Abelian gauge theory
requires keeping very careful track of the fact that only two of the four polarizations of Aµ are physical. The
current way in which we deal with this is by introducing extra fields which “cancel out” the two polarizations
that we don’t want. These are called “ghosts”. In fact, they were technically there in the Abelian theory as
well, but I didn’t talk about them because they don’t interact with anything. In the non-Abelian theory they
do and if you want to do a correct calculation involving fluctuations etc. you need to keep track of them.

A Group theory primer

Here is a little discussion of group theory to show how the ideas above work for any group. Consider an
arbitrary group G. I denote an abstract set of generators of the group by T a, where the index a runs over
the Lie algebra of the group. Let me denote the dimension of the algebra by d(G) (e.g. d(SU(N)) = N2−1).

The T a satisfy the following equation:
[T a, T b] = ifabcT c (A.1)

where the fabc are the structure constants.

Note that there is the Bianchi identity that all operations obey:

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 (A.2)

This identity together with the definition of the structure constants implies that they obey:

fadef bcd + f bdef cad + f cdefabd = 0 (A.3)

This is called the Jacobi identity.

Now there are many different representations for the group, i.e. the abstract T a can be represented by
concrete matrices. Let me denote the actual matrices in the fundamental representation of the group by little
ta. It is of course also true that

[ta, tb] = ifabctc (A.4)
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